Qt Signal Slot Mechanism
This section describes the new style of connecting signals and slotsintroduced in PyQt4 v4.5.
One of the key features of Qt is its use of signals and slots to communicatebetween objects. Their use encourages the development of reusable components.
QtCore.SIGNAL and QtCore.SLOT macros allow Python to interface with Qt signal and slot delivery mechanisms. This is the old way of using signals and slots. The example below uses the well known clicked signal from a QPushButton. The connect method has a non python-friendly syntax. It is necessary to inform the object, its signal (via macro.
- Due to the weak couplings of the Qt signals and slot mechanisms, it is viable to bind signals to each other. It may sound confusing, so let me draw a diagram to make it clear: When an event triggers a specific signal, this emitted signal could be another event, which will emit another specific signal.
- Qt designer add new slot, qt designer custom signal slot Toblerone followed it in 1908. Later came Flake (1920), Fruit and Nut (1921), Milky Way (1923 in the USA 1935 in Britain), Crunchie (1929), Snickers and Freddo (1930), Mars Bar (1932), Whole Nut (1933), Aero and Kit Kat (1935), Maltesers and Blue Riband (1936) and Smarties, Rolo and Milky.
- Signal/slot mechanism is a central feature of Qt and probably the part that differs most from other toolkits. In most GUI toolkits widgets have a callback for each action they can This callback is a.
A signal is emitted when something of potential interest happens. A slot is aPython callable. If a signal is connected to a slot then the slot is calledwhen the signal is emitted. If a signal isn’t connected then nothing happens.The code (or component) that emits the signal does not know or care if thesignal is being used.
The signal/slot mechanism has the following features.
- A signal may be connected to many slots.
- A signal may also be connected to another signal.
- Signal arguments may be any Python type.
- A slot may be connected to many signals.
- Connections may be direct (ie. synchronous) or queued (ie. asynchronous).
- Connections may be made across threads.
- Signals may be disconnected.
Unbound and Bound Signals¶
A signal (specifically an unbound signal) is an attribute of a class that is asub-class of QObject
. When a signal is referenced as an attribute of aninstance of the class then PyQt4 automatically binds the instance to the signalin order to create a bound signal. This is the same mechanism that Pythonitself uses to create bound methods from class functions.
A bound signal has connect()
, disconnect()
and emit()
methods thatimplement the associated functionality. It also has a signal
attributethat is the signature of the signal that would be returned by Qt’s SIGNAL()
macro.
A signal may be overloaded, ie. a signal with a particular name may supportmore than one signature. A signal may be indexed with a signature in order toselect the one required. A signature is a sequence of types. A type is eithera Python type object or a string that is the name of a C++ type. The name of aC++ type is automatically normalised so that, for example, QString
can beused instead of the non-normalised constQString&
.
If a signal is overloaded then it will have a default that will be used if noindex is given.
When a signal is emitted then any arguments are converted to C++ types ifpossible. If an argument doesn’t have a corresponding C++ type then it iswrapped in a special C++ type that allows it to be passed around Qt’s meta-typesystem while ensuring that its reference count is properly maintained.
Defining New Signals with pyqtSignal()
¶
PyQt4 automatically defines signals for all Qt’s built-in signals. New signalscan be defined as class attributes using the pyqtSignal()
factory.
PyQt4.QtCore.
pyqtSignal
(types[, name])¶Create one or more overloaded unbound signals as a class attribute.
Parameters: |
|
---|---|
Return type: | an unbound signal |
The following example shows the definition of a number of new signals:
New signals should only be defined in sub-classes of QObject
. They must bepart of the class definition and cannot be dynamically added as classattributes after the class has been defined.
New signals defined in this way will be automatically added to the class’sQMetaObject
. This means that they will appear in Qt Designer and can beintrospected using the QMetaObject
API.
Overloaded signals should be used with care when an argument has a Python typethat has no corresponding C++ type. PyQt4 uses the same internal C++ class torepresent such objects and so it is possible to have overloaded signals withdifferent Python signatures that are implemented with identical C++ signatureswith unexpected results. The following is an example of this:
Connecting, Disconnecting and Emitting Signals¶
Signals are connected to slots using the connect()
method of a boundsignal.
connect
(slot[, type=PyQt4.QtCore.Qt.AutoConnection[, no_receiver_check=False]])¶Connect a signal to a slot. An exception will be raised if the connectionfailed.
Parameters: |
|
---|
Signals are disconnected from slots using the disconnect()
method of abound signal.
disconnect
([slot])¶Disconnect one or more slots from a signal. An exception will be raised ifthe slot is not connected to the signal or if the signal has no connectionsat all.
Parameters: | slot – the optional slot to disconnect from, either a Python callable oranother bound signal. If it is omitted then all slots connected to thesignal are disconnected. |
---|
Signals are emitted from using the emit()
method of a bound signal.
emit
(*args)¶Emit a signal.
Parameters: | args – the optional sequence of arguments to pass to any connected slots. |
---|
The following code demonstrates the definition, connection and emit of asignal without arguments:
The following code demonstrates the connection of overloaded signals:
Qt Signal Slot Mechanism Action
Connecting Signals Using Keyword Arguments¶
It is also possible to connect signals by passing a slot as a keyword argumentcorresponding to the name of the signal when creating an object, or using thepyqtConfigure()
method of QObject
. For example the following threefragments are equivalent:
The pyqtSlot()
Decorator¶
Although PyQt4 allows any Python callable to be used as a slot when connectingsignals, it is sometimes necessary to explicitly mark a Python method as beinga Qt slot and to provide a C++ signature for it. PyQt4 provides thepyqtSlot()
function decorator to do this.
PyQt4.QtCore.
pyqtSlot
(types[, name[, result]])¶Decorate a Python method to create a Qt slot.
Parameters: |
|
---|
Connecting a signal to a decorated Python method also has the advantage ofreducing the amount of memory used and is slightly faster.
For example:
It is also possible to chain the decorators in order to define a Python methodseveral times with different signatures. For example:
Connecting Slots By Name¶
PyQt4 supports the QtCore.QMetaObject.connectSlotsByName()
function thatis most commonly used by pyuic4 generated Python code toautomatically connect signals to slots that conform to a simple namingconvention. However, where a class has overloaded Qt signals (ie. with thesame name but with different arguments) PyQt4 needs additional information inorder to automatically connect the correct signal.
For example the QtGui.QSpinBox
class has the following signals:
When the value of the spin box changes both of these signals will be emitted.If you have implemented a slot called on_spinbox_valueChanged
(whichassumes that you have given the QSpinBox
instance the name spinbox
)then it will be connected to both variations of the signal. Therefore, whenthe user changes the value, your slot will be called twice - once with aninteger argument, and once with a unicode or QString
argument.
This also happens with signals that take optional arguments. Qt implementsthis using multiple signals. For example, QtGui.QAbstractButton
has thefollowing signal:
Qt implements this as the following:
The pyqtSlot()
decorator can be used to specify which ofthe signals should be connected to the slot.
For example, if you were only interested in the integer variant of the signalthen your slot definition would look like the following:
If you wanted to handle both variants of the signal, but with different Pythonmethods, then your slot definitions might look like the following:
The following shows an example using a button when you are not interested inthe optional argument:
Mixing New-style and Old-style Connections¶
The implementation of new-style connections is slightly different to theimplementation of old-style connections. An application can freely use bothstyles subject to the restriction that any individual new-style connectionshould only be disconnected using the new style. Similarly any individualold-style connection should only be disconnected using the old style.
You should also be aware that pyuic4 generates code that usesold-style connections.
EnArBgDeElEsFaFiFrHiHuItJaKnKoMsNlPlPtRuSqThTrUkZh
This page was used to describe the new signal and slot syntax during its development. The feature is now released with Qt 5.
- Differences between String-Based and Functor-Based Connections (Official documentation)
- Introduction (Woboq blog)
- Implementation Details (Woboq blog)
Note: This is in addition to the old string-based syntax which remains valid.
- 1Connecting in Qt 5
- 2Disconnecting in Qt 5
- 4Error reporting
- 5Open questions
Connecting in Qt 5
There are several ways to connect a signal in Qt 5.
Old syntax
Qt 5 continues to support the old string-based syntax for connecting signals and slots defined in a QObject or any class that inherits from QObject (including QWidget)
New: connecting to QObject member
Here's Qt 5's new way to connect two QObjects and pass non-string objects:
Pros
- Compile time check of the existence of the signals and slot, of the types, or if the Q_OBJECT is missing.
- Argument can be by typedefs or with different namespace specifier, and it works.
- Possibility to automatically cast the types if there is implicit conversion (e.g. from QString to QVariant)
- It is possible to connect to any member function of QObject, not only slots.
Cons
- More complicated syntax? (you need to specify the type of your object)
- Very complicated syntax in cases of overloads? (see below)
- Default arguments in slot is not supported anymore.
New: connecting to simple function
The new syntax can even connect to functions, not just QObjects:
Pros
- Can be used with std::bind:
- Can be used with C++11 lambda expressions:
Cons
- There is no automatic disconnection when the 'receiver' is destroyed because it's a functor with no QObject. However, since 5.2 there is an overload which adds a 'context object'. When that object is destroyed, the connection is broken (the context is also used for the thread affinity: the lambda will be called in the thread of the event loop of the object used as context).
Disconnecting in Qt 5
As you might expect, there are some changes in how connections can be terminated in Qt 5, too.
Old way
You can disconnect in the old way (using SIGNAL, SLOT) but only if
- You connected using the old way, or
- If you want to disconnect all the slots from a given signal using wild card character
Symetric to the function pointer one
Only works if you connected with the symmetric call, with function pointers (Or you can also use 0 for wild card)In particular, does not work with static function, functors or lambda functions.
New way using QMetaObject::Connection
Works in all cases, including lambda functions or functors.
Asynchronous made easier
With C++11 it is possible to keep the code inline
Here's a QDialog without re-entering the eventloop, and keeping the code where it belongs:
Another example using QHttpServer : http://pastebin.com/pfbTMqUm
Error reporting
Tested with GCC.
Fortunately, IDEs like Qt Creator simplifies the function naming
Missing Q_OBJECT in class definition
Type mismatch
Open questions
Default arguments in slot
If you have code like this:
The old method allows you to connect that slot to a signal that does not have arguments.But I cannot know with template code if a function has default arguments or not.So this feature is disabled.
There was an implementation that falls back to the old method if there are more arguments in the slot than in the signal.This however is quite inconsistent, since the old method does not perform type-checking or type conversion. It was removed from the patch that has been merged.
Overload
As you might see in the example above, connecting to QAbstractSocket::error is not really beautiful since error has an overload, and taking the address of an overloaded function requires explicit casting, e.g. a connection that previously was made as follows:
connect(mySpinBox, SIGNAL(valueChanged(int)), mySlider, SLOT(setValue(int));
cannot be simply converted to:
...because QSpinBox has two signals named valueChanged() with different arguments. Instead, the new code needs to be:
Unfortunately, using an explicit cast here allows several types of errors to slip past the compiler. Adding a temporary variable assignment preserves these compile-time checks:
Qt Connect Signal Slot
Some macro could help (with C++11 or typeof extensions). A template based solution was introduced in Qt 5.7: qOverload
The best thing is probably to recommend not to overload signals or slots …
… but we have been adding overloads in past minor releases of Qt because taking the address of a function was not a use case we support. But now this would be impossible without breaking the source compatibility.
Disconnect
Should QMetaObject::Connection have a disconnect() function?
The other problem is that there is no automatic disconnection for some object in the closure if we use the syntax that takes a closure.One could add a list of objects in the disconnection, or a new function like QMetaObject::Connection::require
Callbacks
Function such as QHostInfo::lookupHost or QTimer::singleShot or QFileDialog::open take a QObject receiver and char* slot.This does not work for the new method.If one wants to do callback C++ way, one should use std::functionBut we cannot use STL types in our ABI, so a QFunction should be done to copy std::function.In any case, this is irrelevant for QObject connections.